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Abstract
In text, images, merged surveys, voter files, and elsewhere, data sets are o�enmissing important covariates,

either because they are latent features of observations (such as sentiment in text) or because they are not

collected (such as race in voter files). One promising approach for coping with this missing data is to find

the true values of the missing covariates for a subset of the observations and then train a machine learning

algorithm to predict the values of those covariates for the rest. However, plugging in these predictions

without regard for prediction error renders regression analyses biased, inconsistent, and overconfident.

We characterize the severity of the problem posed by prediction error, describe a procedure to avoid

these inconsistencies under comparatively general assumptions, and demonstrate the performance of our

estimators through simulations and a study of hostile political dialogue on the Internet. We provide so�ware

implementing our approach.

Keywords: machine learning, classification, inference, instrumental variables

1 Introduction

In many regression analyses, both the outcomes and the covariates are observed by the

researcher.However, inother cases, the covariatesmaybemissing for someobservations. Perhaps

the covariates are not collected for some subset of the data. For example, some states record race

in their voter files, but others donot. Alternatively, the covariatesmight require costly hand-coding

to measure, and the dataset may be too large to hand-label most of the observations.

Social scientists have begun to leverage supervisedmachine learning (ML) to impute the values

of these missing covariates based on supplemental data. Imai and Khanna 2016 use a Bayesian

algorithm to predict race (the covariate) from surname (the supplemental data) to regress turnout

(the outcome) on race. Stewart and Zhukov, 2009 use an ensemble to predict whether a Russian

government memo is activist or conservative with regard to use of force (the covariate) from the

memo’s text (the supplemental data) tomeasure the correlationbetweenuseof force andwhether

the memo’s author is civilian or military. In these cases and many others (Grimmer, Messing,

and Westwood, 2012; King, Pan, and Roberts, 2013; Jamal et al., 2015; Anastasopoulos et al., 2016;

Theocharis et al., 2016), using ML techniques to impute missing covariates has opened hitherto

difficult to analyze data sources to large-scale regression analysis.

However, these ML predictions differ from the underlying covariate for some observations. We

show that plugging in these ML predictions without regard for prediction error, as many studies

do, leads to bias, inconsistency, and inappropriately small estimates of standard errors. In our

example application, the bias and overconfidence are so severe that the 95% confidence interval

of this plug-in estimator lies entirely outside of the 95%confidence interval of a baseline estimator

known to be unbiased, consistent, and have correct coverage. In fact, simply plugging in the ML

predictions as if they were the real covariates would have caused us to arrive at the complete

opposite conclusion. The problem is not addressed by intuitive strategies previous studies have
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employed, such as bootstrapping and integrating over the uncertainty in the predictions. While

statistics and econometrics providemethods formeasurement error, such asmultiple imputation,

we show that these solutions perform poorly when most observations contain missing data, as

o�en happens in ML.1

In some cases, the best option is to not use ML at all, and to instead perform the analysis in the

subset of the data that has been labeled by hand. This estimator is guaranteed to be unbiased

and consistent under minimal assumptions. But if an exclusion restriction that we enumerate

is satisfied, we show that the analyst can use the classifier’s predictions to improve statistical

efficiency without introducing inconsistency or overconfidence. This approach combines a new

sample splitting scheme and a general method of moments (GMM) estimator that leverages

two intuitions. First, the sometimes-missing covariate is observed for some observations and

regression coefficients can be consistently estimated using only that subset of the data. Second,

for those observations where the covariate is missing, the ML classifier’s2 predictions can be used

as instruments for the true covariates, and regression coefficients can be estimated using two-

stage least squares. Our GMM combines these two estimators to make an efficient, consistent

estimator that has analytic standard errors, runs quickly on large data sets, and permits tests

of and sensitivity analyses for its strongest assumption. It performs well in simulations, and we

highlight the substantive impact of its performance gains through an application.3 We provide an

implementation of this GMM in an R package available online.4

2 Challenges

The prediction error associated with using classifier outputs as regression covariates is a form of

measurement error, awell-studiedproblem ineconometrics and statistics.We first clarify theneed

to address prediction error by showing that plugging predictions in for the true covariates leads

to bias, inconsistency, and standard errors that are too small. We then clarify how two features

common in modern ML problems—endogenously derived predictions and missing covariates for

a large proportion of the observations—lead theoretically appealing extant solutions to perform

poorly in practice.

2.1 Measurement Error from Predictions
Suppose our goal is to fit the linear regression of y on a vector of covariates x :

y = xTβ +ǫ, Å[xǫ] = 0. (1)

What distinguishes our task from typical regression analyses is that some covariates are missing

for some observations. We denote the sometimes-missing covariates as xu ,5 the always-observed

covariates as x o , and rewrite the original vector as x = (xu ,x o ). We assume throughout that

x o includes an intercept. In a regression of presidential vote choice on whether an individual

identifies as white in their state’s voter file, xu corresponds to whether the individual identifies

as white, information which is unobserved in some state voter files.

A ML approach to this task is to use some algorithm (e.g., logistic regression, random forests,

support vector machines [SVMs]) to generate predictions of the covariates, z u , that are supposed

to approximate the missing covariates, xu . For example, we could follow Imai and Khanna, 2016

1 Noteworthy exceptions are Hopkins and King 2010 and Jerzak, King, and Strezhnev 2018, which consistently estimate
population proportions in the presence of prediction error.

2 Although our exposition focuses on classifiers, all of our work applies not just to non-binary missing variables.
3 The replication data is available interactively at Fong and Tyler (2020a) or for download at Fong and Tyler (2020b).
4 See github.com/matthewtyler/predictionError.
5 Sometimes xu is obtained from human coding (e.g., whether a social media post is criticizing the government). Human
coding can be contentious; for example, two coders might disagree about what is and what is not a criticism of the
government. In the conclusion, we discuss how to think about human coding error in our framework.
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in using Bayes’ Rule and expectation-maximization to generate predicted race, z u , to proxy for

whether the individual is actually black, xu . Note that, for our purposes, it is o�en convenient

to use the notation z = (z u ,x o ) and refer to both z u and z as “the predicted covariates” or ”the

predictions.” The vector z is written as if it predicts the whole vector x , even though we aren’t

predicting x o because we already know its true value.

We call plugging in the predicted covariates for the sometimes-missing covariates the “naive

estimator.” To see the problems with this estimator, we rewrite Equation (1) using the same β

coefficients but replacing the original covariates with the predictions (using βu to represent the

portion of β that corresponds to the covariates in xu ):

y = zTβ + ǫ̃, ǫ̃ = (xu − z u )
Tβu +ǫ. (2)

Fitting a linear regression of y on z will be consistent for β if the predictions are uncorrelated

with the new residual, ǫ̃. Otherwise, the regression will suffer from omitted variable bias. The

residual in this plug-in regression, ǫ̃, has two components: the prediction error, (xu − z u )
Tβu , and

the residual from the original regression of y on x , ǫ. Both componentsmust be uncorrelatedwith

the predictions, zu , and the observed covariates, xo , to avoid omitted variable bias.

Equation (1) already implies that the always-observed covariates, x o , and the residual for the

original regression, ǫ, are uncorrelated, Å[xǫ] = 0; if they were correlated, the sum of squared

residuals could be decreased by adjusting β . This, however, is not enough; we need tomake three

more assumptions for the naive estimator to be consistent for β .

ASSUMPTION 1 (Exclusion Restriction) The predictions, z u , and the residual from the original

regression, ǫ, are uncorrelated (Å[z uǫ] = 0).

ASSUMPTION 2 (Prediction Errors Uncorrelated with Observed Covariates) The prediction

errors, xu − z u , are uncorrelated with the observed covariates, x o (Å[x o (xu − z u )
T] = 0). This

implies the prediction error must be mean zero, and hence the classifier must be unbiased.

ASSUMPTION 3 (Prediction Errors Uncorrelated with Predicted Covariates) The prediction

errors, xu − z u , are uncorrelatedwith the predicted covariates, z u (Å[z u (xu − z u )
T] = 0).

Many readers will be more familiar with the notion of classical measurement error rather than

the slightly more expansive Assumptions 1–3. In the framework of classical measurement error,

Assumptions 1 and 2 are assumed to be true, but Assumption 3 is permitted to be false. Other

scholars, focusedonnonclassicalmeasurement error, still take Assumption 1 for grantedbut allow

Assumptions 2 and 3 to be false (Aigner,1973; Kane, Rouse, and Staiger, 1999).

If all three assumptions hold, the naive estimator is consistent for the true coefficient, β , from

theoriginal regressionof y onx .6 Theproblemwith thenaive estimator is that these threeassump-

tions are exceedingly restrictive. For example, suppose the sometimes-missing covariate, xu , and

the prediction of that covariate, zu , are both binary variables. If we are regressing presidential vote

choice, y, on self-reported race, then we might use xu = 1 if the individual identifies as white and

xu = 0 otherwise, while zu ∈ {0,1} is the prediction of xu from a classifier that takes as inputs the

individual’s surname and county of residence. Even in this innocuous situation, Assumptions 2

and 3 do not hold and the naive estimator is biased (Aigner, 1973). In general, if both the covariate

xu and the prediction zu are categorical, then Assumptions 2 and 3 are violated and the naive

estimator is biased (Aigner, 1973; Kane, Rouse, and Staiger, 1999).

When any one of these three assumptions is violated, then the naive estimator is biased

and inconsistent, as it would be in the omitted variable situation. Some applied researchers,

6 Proof: Since Å[x oǫ ] = 0, Assumption 1 implies Å[zǫ ] = 0. Assumptions 2 and 3 give us that Å[z (xu − z u )
Tβ ] = 0. Taken

together, these imply Å[z ǫ̃ ] = 0.
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recognizing that their regressions suffer from prediction error, argue that their estimator suf-

fers from attenuation bias, that their estimates are conservative (with respect to a zero null

hypothesis), and hence prediction error can be ignored when we only care about the sign of a

coefficient (Grumbach and Sahn, 2020). However, severe enough attenuation bias prevents the

finding of statistically significant effects. In an applied field that places a high priority on the

discovery of significant effects, a method that could reduce or eliminate attenuation bias should

be welcome. More importantly, the bias/inconsistency of the naive regression is only guaranteed

to take the form of attenuation if Assumptions 1 and 2 are satisfied but Assumption 3 is violated

(as with classical measurement error, see Cameron and Trivedi, 2005, §26.2.3). Otherwise, the

researcher cannot know the direction or size of the bias/inconsistency. Unfortunately, any bias

and inconsistency (attenuation or otherwise) also invalidates any confidence intervals as well.

Some applied researchers have recognized that using the predictions of ML algorithms as

covariates requires correction, but theydonot formally analyze the issue, and consequently adopt

ad hoc corrections that do not resolve the underlying inconsistency. For instance, Stewart and

Zhukov (2009) sample from the predictive distribution implied by their ML algorithm, apply the

naive estimator to this draw, and repeat this procedure many times to generate the presumed

sampling distribution of the regression estimator. This procedure does not fix the inconsistency

for a number of reasons, but the following is the simplest: if Assumptions 1 and 2 are satisfied and

only Assumption 3 is violated, then each draw suffers from attenuation bias, and the average of

these attenuated draws must itself be attenuated. Since the attenuation bias does not converge

toward 0 as the sample grows, the estimator is also inconsistent.

2.2 Further Challenges fromML
Statistics and econometrics have produced a number of methods for addressing measurement

error, which we review in Online Appendix G. Two features of the data common inML applications

cause these solutions to perform poorly in practice.

First, the predictions are not exogenously given, but learned from a training set where the true

values of the covariate are known. A classifier’s predictions are typicallymore accurate in the data

used to train the classifier than in other data due to overfitting. Therefore, any correction that

depends on knowing the accuracy of the predictions must contend with the fact that estimates

of accuracy drawn from the training set will probably be overly optimistic. Overfitting precludes

regressing theoutcomeon theMLalgorithm’spredictedprobability for each label, as inTheocharis

et al., 2016, not just because those predicted probabilities might violate the measurement error

conditions, but also because the predicted probabilities tend to correlate more strongly with xu

in the labeled sample than they do in the unlabeled sample. This same concern also prevents

straightforward application of existing two-stage least squares (2SLS) estimators that one might

use to address measurement error. Although our approach uses 2SLS and is closely related to

the idea of regressing the outcome on predicted probabilities, we are careful to account for the

overfitting concern when constructing our estimator.

Second, the subset of the data where the true label is known is typically small in ML

applications—virtually always less than half, sometimes only a fraction of one percent. Many

seemingly attractive approaches that we describe in Online Appendix H, including multiple

imputation (Rubin, 2004), full information maximum likelihood estimation, and a fully Bayesian

model (Ibrahim et al., 2005), attempt to identify patterns in the subset of the data where the

true label is known and then extrapolate these patterns to the rest of the data. Due to possibly

incorrect functional form and distributional assumptions as well as estimation error, the patterns

discovered in the labeled data do not hold exactly in the unlabeled data. If the proportion of

unlabeled data is small, these errors do not affect the final estimates too much. But if most of

the data is unlabeled, then the analysis relies heavily on extrapolation from the labeled data,
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and even tiny errors in the patterns identified in the labeled data propagate into massive errors

in the estimates of the parameters. In fact, the simulations in Online Appendix H show that the

performance of these estimators degrades as the amount of unlabeled data grows. Our proposed

solution avoids making strong functional form or distributional assumptions about the true data

generating process.

It is important to remember that the researcher usually has access to an estimator that is

consistent, even when all three assumptions are violated. To fit the ML algorithm, the researcher

needs a subset of observations where xu is observed; we refer to this as the labeled sample.

The “labeled-only estimator” estimates the regression of y on x within the labeled sample. If the

labeled sample is a simple random sample of the data, this estimator is consistent for the same

reason a standard OLS estimator is consistent.

However, an estimator that exploited the unlabeled data without sacrificing consistency could

be more efficient than the labeled-only estimator. In the following section, we develop just such

an estimator—one which, given only Assumption 1, is guaranteed to be more efficient than the

labeled-only estimator. In cases where, for empirical or theoretical reasons, the analyst is uncom-

fortable with Assumption 1 (the exclusion restriction), we recommend fitting the regression in the

hand-labeled sample, because that procedure is robust to violation of the exclusion restriction at

the cost of efficiency.

3 A Data-Splitting, OLS + 2SLS Approach

Ourproposedmethodexploits thenatural structureofML-assistedproblems: to train the classifier,

there is always a samplewhere x is observed,whichwecall the labeled sample.7 This suggests two

consistent estimators if the labeled data are simple random sample of all of the data (we address

the case where it is not in Online Appendix D). First, in the labeled subset of the data, OLS can

consistently estimate the coefficients β from Equation (1) using the observed values of xu (i.e., the

labeled-only estimator mentioned above). Second, if the exclusion restriction holds, Å(z uǫ) = 0,

the algorithm’s predictions z are valid instruments for x . A careful application of two-stage least

squares (2SLS) that takes into account overfitting allows us to estimate the same β coefficients

from Equation (1) with data from the unlabeled sample. We propose an estimator that optimally

combines these two estimators via the GMM. The estimator can be used with any classifier,

whether that is support vector machines, neural networks, ensembles, or tree-basedmodels.

3.1 Sample-Splitting
As we illustrate in Figure 1, our proposed estimator requires splitting the whole dataset into three

distinct parts: the primary sample, the validation sample, and the training sample.

Our focus here is on applications where we can afford to label or hand-code only a fraction of

the data, and thus a random sample of all cases is labeled and the rest are unlabeled. A�er this

hand-labeling of some observations, xu is assumed to bemissing completely at random (MCAR)—

an unobjectionable assumption if the researcher decides which cases are labeled and which are

not, as is typical inML applications. Let pi ∈ {0,1} indicatewhether i = 1, . . . ,n is unlabeled, where

pi = 1 indicates that xu is unobserved for observation i.8 The p stands for “primary” sample, with

np =
∑n

i=1 pi the number of observations in the primary sample. In most ML applications, np >>

n −np .

We further split the labeled data (but not the primary sample) into two samples with different

purposes: the training sample used to fit the ML algorithm and the validation sample used to

7 In practice, labels produced by human codersmay be subject to coding error. We consider the problemof coding error and
its relation to out framework in the conclusion.

8 If MCAR is violated, a modified version of our estimator can be used if Å[x | z ,p ] = Å[x | z ] and Å[xu | z ] is a linear
function of z (see Online Appendix D).
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Figure 1. A graphical summary of the data-splitting strategy required for the proposed GMM estimator.

estimate the relationship between predictions and sometimes-missing covariates in the primary

sample. We will elaborate upon the necessity of a validation sample when we describe the

2SLS estimator. The training sample is endowed with indicator t i ∈ {0,1} and count n t , and the

validation sample is endowed with indicator vi ∈ {0,1} and count nv . The three samples are

mutually exclusive and exhaustive such that n = np +n t +nv .

The researcher should divide the labeled data between the training and validation subsets

completely at random. Labeling more observations and adding them to either the training or

validation sample or both improves the performance of our estimator, but how much of the

labeled data should go into each subset is a more difficult question. A larger training sample

improves the accuracy of the classifier; a larger validation sample improves understanding of

how these predictions relate to the missing data in the primary sample. The performance of

our estimator depends on both. The optimal split depends on the type of ML algorithm being

employed and the parameters of the data-generating process. For example, we employ a training-

focused split in the application presented in Section 5 because the prediction problem in that case

wasparticularly difficult. However, other applicationsmaybenefit fromamore validation-focused

split if theMLalgorithmcanachieve reasonable accuracywith a small training sample. In any case,

ourproposedestimator is alwaysmoreefficient than the labeled-only estimator, regardlessof how

much we prioritize the training or validation samples (see Online Appendix A).

3.2 Component 1: Labeled-Only OLS
With our three samples, one option is to ignore the unlabeled primary sample and run OLS in

the training and validation samples. This is the labeled-only estimator from Section 2. If linear

regressionwouldbeaconsistent estimator forβ ifx couldbeperfectlyobserved, then this labeled-

only estimator is also consistent for β , because the labeled sample is assumed to be a simple

random sample of the full data. However, the labeled-only OLS estimator is inefficient because

it does not use any of the information contained in the usually much larger primary sample.

3.3 Component 2: Two-Stage Least Squares
Alternatively, we can draw inspiration from instrumental variables to incorporate the primary

sample into our analysis. Social scientists o�en use instrumental variables and the accompanying

2SLS estimator to estimate causal relationships when some regressors are correlated with the

error term, a pathology more popularly known as endogeneity.

We can apply these same ideas to address the problem of prediction error. First, as alluded to

above, we use the training sample to train a classifier to predict the sometimes-missing covari-

ates, xu . These predictions, z u , can then be used as instruments for xu . So long as the predictions

are correlated with the outcome only through their correlation with the missing covariate (the
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exclusion restriction fromSection 2, whichwe dubbed Assumption 1), 2SLS consistently estimates

β from Equation (1). In Section 3.5 we argue that the exclusion restriction is more likely to

hold in these predicted covariate settings than in traditional instrumental variable analyses with

convenient instruments and provide a hypothesis test for it.

To review the mechanics of 2SLS for our particular problem, defineΓ as a matrix that encodes

the linear projection of x on z .

x = Γz +η, Å[zηT] = 0. (3)

Now, let us repeat the same exercise from Section 2, except this time instead of using the

predictions z directly, we substituteΓz in for x .

y = (Γz )Tβ + ǫ̃, ǫ̃ = (x −Γz )Tβ +ǫ.

We can revisit the three assumptions for consistency from Section 2 with this new estimator.

As before, we still require the exclusion restriction: Å[zǫ] = 0. This reliance on the exclusion

restriction is unsurprising, since instrumental variables in the usual endogenous regressor case

also requires the exclusion restriction.

But now there is no longer an omitted variable problem since Å[Γz (x − Γz )T] = 0. Why?

Because x −Γz = η, and η is uncorrelated with z by definition of Γ ; see Equation (3). Verbally,

when we regress x on z , the resulting coefficient matrix Γ is the coefficient matrix that makes

the residuals, x −Γz uncorrelated with the regressors, z = (x o ,z u ). Thus, so long as the exclusion

restriction is satisfied, the regressionofx onΓz is consistent forβ , reducingour threeassumptions

to one.9

2SLS exploits this observation by regressing x on z in the validation sample as the first stage.

The coefficients from this first stage are an estimate of Γ , Γ̂ . The second stage regresses y on Γ̂x

in the validation and primary samples, and the coefficients from this regression are a consistent

estimator for β .10

At first glance, the fact that this second-stage regression consistently estimates β may be

puzzling. Γz is a prediction of x , but z itself was already a prediction of x . Why does multiplying

z byΓ free us from Assumptions 2 and 3 from Section 2?

It is helpful to think of the first stage linear regression as a form of post-processing for the

predictions. Linear regression can be understood as an algorithm for finding a Γ such that

residuals are uncorrelated with the regressors. These are precisely the conditions required by

Assumptions 2 and 3 of the plug-in estimator. No matter what classifier is used, running its

outputs through this first stage assures the resulting linear predictions satisfy Assumptions 2

and 3.

Finally, it is essential to use only the validation data, and not the training data, to estimate Γ .

The purpose of Γ is to estimate the linear projection of x on z in the primary sample. Due to the

inevitability of at least someoverfitting, the coefficient in that projectionwill generally be closer to

1 in the training sample than it is in the primary sample, but it is the same in the validation sample

as in the primary sample.

3.4 Combining Estimators with GMM
Rather than choose between these two estimators, we combine them via the GMM for greater

efficiency. GMM enumerates a vector of functions that are in expectation equal to 0 at the true

9 This is guaranteed so long as the zu explains enough variation in xu a�er partialing out xo—theusual “relevance” condition
for instruments in 2SLS. This is likely, because algorithmic predictions zu are optimized for explaining variation in xu and
typically use supplemental information (e.g., text, pixels) not fully captured by xo .

10 More precisely, they are consistent as nv → ∞. We discuss this in further detail in Online Supplementary Material,
Appendix A.
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value of the parameter to be estimated. For example, OLS within the training and validations

samples combined can be expressed as the following set of moment conditions:

g1(b) =
1

n t +nv

n∑

i=1

(t i +vi )x i (yi −xTi b),

By solving for the b that makes this vector equal to 0, we get the familiar closed-form solution

for the OLS estimator for the relevant subsample.

Likewise, the second stage of the two-stage least squares estimator can be written as

g2(b) =
1

np +nv

n∑

i=1

(pi +vi )z i (yi − (Γ̂ z i )
Tb) (4)

where Γ̂ is an estimate ofΓ obtained by OLS of x on z in the validation sample.

The advantage of GMM is that multiple estimators can be combined by concatenating their

moment conditions. Let g (b) = (g1(b),g2(b)). This is what is known as an overidentified GMM,

because there are 2dx moment conditions (since g1 and g2 are both vectors of length dx ) but

only dx parameters to be estimated. Since there are more equations than parameters, there will

in general be no vector of parameters that make all of the moment conditions exactly equal to 0.

Rather, we find the b that makes g as close to 0 as possible:

β̂GMM = arg min
b

g (b)TW g (b) (5)

whereW is somepositive definiteweightingmatrixW ∈Ò2dx×2dx whichwe fix ex ante. Thismatrix

governs how much the GMM prioritizes the OLS versus 2SLS moment conditions in the almost-

certain event that they cannot all be satisfied exactly.

Thus, our proposed GMM tries to find an estimate of β that fits both the OLS and 2SLSmoment

conditions well. In Online Appendix A, we show that this estimator strictly dominates using

either OLS in the labeled sample or 2SLS on their own. In that same Online Appendix, we delve

into the technical details of our GMM estimator: how to derive optimal value ofW that minimizes

the variance, how to derive the asymptotic variance of this estimator, and how to account for

the fact that Γ is estimated rather than known ex-ante. We show that, keeping nv fixed, there is

always an improvement in asymptotic efficiency from increasing the amount of unlabeled data

np . Additionally, becausewenever required a specific distribution for the residuals ǫ, our standard

errors and confidence intervals are robust to heteroscedasticity.

3.5 The Exclusion Restriction
In Section2,wediscussedhowAssumptions 2 and3 (prediction errors uncorrelatedwithobserved

covariates and predicted covariates) are implausibly restrictive for the naive estimator. They are

o�en necessarily false under common circumstances (Aigner, 1973). Our proposed GMM estimator

uses a first-stage regression to automatically satisfy these assumptions in the 2SLS component,

but Assumption 1, the exclusion restriction, cannot be bypassed. The exclusion restriction is

violated when predictions z u explain the outcome y a�er the original covariates x have been

linearly controlled for, which creates an omitted variable problem for 2SLS.

While it is not a theorem, the exclusion restriction is more plausible for ML predictions than

for conventional instrumental variables analyses. Unlike traditional instruments, which are o�en

taken as a matter of convenience and may be arbitrarily related to a variety of variables in the

residual ǫ, ML predictions come fromamechanical process designed to approximate xu aswell as
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possible. If thepredictions z u areexplaining the residualǫ, then theyaredoing soat theexpenseof

explaining xu , which is, by the definition of β , uncorrelated with ǫ. Thus, accurate ML predictions

are already designed to satisfy the exclusion restriction to some extent.

To make the exclusion restriction even more plausible, we recommend avoiding the use of

variables known to correlate highly with ǫ, such as y, to produce the ML predictions z u . For

example, in Online Appendix K we hide party identification from our classifier because it is highly

correlated with the outcome of vote choice.

A�er taking appropriate precautions, we may still be concerned about violations of the exclu-

sion restriction. In Online Appendix B, we derive a test of the exclusion restriction. When we treat

the exclusion restriction as the null hypothesis, we can use an over-identification test to evaluate

its suitability.

It is important to keep in mind that the test should not be treated as the final word on the

exclusion restriction. A failure to reject the null hypothesis that the exclusion restriction is true

(Assumption 1 is true) is the best outcome we can get, but a failure to reject the null hypothesis

doesnot imply that the exclusion restriction is satisfied. A failure to reject could alsooccur because

the test is not sufficiently powerful. Only the validation sample can be used for the test, so the only

way tomake the testmore powerful is to increase the size of the validation sample. The validation

sample will influence the power of the test at the usual root-nv rate. Analysts should treat the

exclusion restriction test as if it is testing for z u as an omitted variable in the original regression of

y on x . Thus, the usual methods of power analysis (with nv the relevant sample size) apply here.

Simulations in Online Appendix J give more context on the ER test power at different validation

sample sizes and differentmagnitudes of exclusion restriction violations. Note that increasing the

size of the validation sample either requires more hand-coding (which is costly) or taking units

from the training sample, which leads to less accurate predictions. As we show in Section 4, less

accuratepredictions tend todegradeperformance.Therefore, the researcher facesanunavoidable

tradeoff betweenmaximizing the accuracy of their classifier and increasing the power of their test

of the exclusion restriction.

The exclusion restriction test simulation in Online Appendix J show that small violations lead

to small biases in the GMM estimator. However, these simulations emphasize that failure to reject

the exclusion restrictionmust not be confused with evidence that the exclusion restriction is true.

We include the exclusion restriction test as an automatic feature in our R package, but caution

that passing the test we provide should be seen as a necessary condition for the GMM estimator

to succeed but not as a sufficient condition.

4 Simulation Studies

In order to verify that the GMM preforms well for realistic configurations of the parameters, we

provide simulations that compare the performance of four estimators: (1) the naive estimator

that substitutes the predictions, zu , for the missing covariates, xu , in the primary sample, (2) the

labeled-only estimator that performs OLS within the training and validation samples in which no

covariates are ever missing, (3) the proposed GMM estimator from Section 3, and (4) an oracle

estimator that regresses y on (xo ,xu ) for all observations, including the primary sample where xu
is actually missing. If GMM (or any proposed correction) is worse than the labeled-only estimator,

then the analyst would be better off not using any unlabeled data at all. The oracle estimator

is inaccessible in practice because the missing covariate, xu , is not actually observed for all

observations, but it sets an upper performance bound for any correction for prediction error.

Data for each iteration of each simulation is generated by the following process:

1. Let xu be a vector of length n t + nv + np , where half of the observations are 1 and the other

half are 0. xo , the never-missing covariates, consists only of an intercept.
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2. Generate y ∼ f (x ), where f depends on the simulation setting.

3. Generate zu ∼ Bernoulli(πxu + (1 − π)(1 − xu )). π is the accuracy of the simulated

classifier.

4. Split each draw into a labeled sample of size n t + nv (where xu is observed for all four

estimators) and an unlabeled sample of size np (where xu is hidden from all but the oracle

estimator).

We study how the four estimators perform as three dimensions of problem difficulty vary:

the size of the primary sample, the accuracy of the classifier (π), and the signal-to-noise

ratio.

The returns for using unlabeled data depend on the amount of unlabeled and labeled data

available. Below, we specify n t = 1,000 training observations and nv = 1,000 validation observa-

tions, and vary the number of unlabeled observations, np between 10,000 and 1,000,000. These

ranges are drawn from prior applications. Grimmer, Messing, and Westwood (2012) hand-labeled

500 press releases for their classifier while Theocharis et al. (2016) hand-labeled 7,000 tweets.

2,000 labeled documents represents a substantial but feasible effort. As for np , Stewart and

Zhukov (2009) consider a data set of 7,800 unlabeled documents and social media applications

(such ours in Section 5) regularly run into the millions.

Weparameterize theperformanceof theclassifierby its accuracy,π = P (zu =1 | xu = 1)= P (zu =

0 | xu = 0). We consider two different classifier performance levels. In the first, the classifier is

correct 72% of the time; this is roughly the accuracy achieved by Iyyer et al. (2014) for labeling the

ideology of sentences and is typical of the performance a diligent social scientist could hope to

achieve on a novel but well-defined problem. The second setup considers a best-case scenario

where the classifier is able to achieve 90% accuracy. This is roughly the accuracy achieved by

Socheret al. (2013) applyinga thenstate-of-the-art classifier to thewell-studiedsentimentanalysis

problemwith a massive training set.

Finally, the difficulty of the estimation problem depends on the effect size compared to the

variance in the outcome, the signal-to-noise ratio. When the signal-to-noise ratio is high, the

effect can be estimated with relatively few data points. In the high signal-to-noise setup, yi =

xu,i +N (0,1). To demonstrate a low signal-to-noise setup and ensure that our results do not rely

on Gaussian errors, we also consider a skewed, non-normal mixture distribution where yi = xu,i +

N (0,8)+Bernoulli(0.15)× |N (0,20)|, which generates a non-normal distribution with a standard

deviation approximately 10 times as large as the high signal-to-noise ratio. This error distribution

is designed to represent the many social science applications where the covariate of interest

accounts for only a small proportion of the variation in the outcome.

Tables 1 and 2 present the bias, root-mean-squared-error (RMSE), and 95% confidence interval

coverage with the realistic and best-case classifiers. Online Appendix I

Table 1. Realistic classifier.

High signal-to-noise Low signal-to-noise

Metric np NV LAB GMM ORCL NV LAB GMM ORCL

Bias 104 −0.47 −0.00 −0.00 0.00 −0.46 0.01 0.01 −0.00

106 −0.56 −0.00 −0.00 −0.00 −0.56 0.01 −0.00 0.00

RMSE 104 0.47 0.04 0.04 0.02 0.50 0.46 0.36 0.19

106 0.56 0.04 0.04 0.00 0.56 0.46 0.08 0.02

Coverage 104 0.00 0.96 0.96 0.96 0.35 0.96 0.95 0.96

of 95% CI 106 0.00 0.96 0.95 0.95 0.00 0.96 0.94 0.96
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Table 2. Best-case classifier.

High signal-to-noise Low signal-to-noise

Metric np NV LAB GMM ORCL NV LAB GMM ORCL

Bias 104 −0.17 −0.00 −0.00 0.00 −0.17 0.01 −0.00 −0.00

106 −0.20 −0.00 −0.00 −0.00 −0.20 0.01 0.00 0.00

RMSE 104 0.17 0.04 0.03 0.02 0.26 0.46 0.24 0.19

106 0.20 0.04 0.02 0.00 0.20 0.46 0.04 0.02

Coverage 104 0.00 0.96 0.97 0.96 0.88 0.96 0.96 0.96

of 95% CI 106 0.00 0.96 0.95 0.95 0.00 0.96 0.96 0.96

The naive estimator performs poorly, even with a highly accurate classifier. Its bias is far larger

than the other estimators, and the bias grows as the classifier becomes less accurate. As a result,

its 95% confidence intervals do not achieve the proper coverage.

The GMM, by contrast, is essentially unbiased and its 95% confidence intervals achieve the

correct coverage. It achieves a lower RMSE than the labeled-only estimator in all setups. Online

Appendix I shows that its performance converges to that of the labeled-only estimator as the

classifier becomes so inaccurate that it is completely uninformative, and the tables show that its

performance approaches that of the oracle as the classifier becomesmore informative.

The labeled-only estimator is preferable to the GMM if there is good reason to suspect the

exclusion restriction is violated, such as when the test we provide in Online Appendix B rejects the

null hypothesis that the exclusion restriction is satisfied. Even if the exclusion restriction cannot

be rejected statistically, the labeled-only estimator’s robustness to violation of the exclusion

restriction make it attractive when the efficiency gains of the GMM are sm. Three parameters

influence the gains of the GMM over the labeled-only estimator. First, the gains are large when the

classifier is accurate, because a more accurate classifier allows more information to be extracted

fromtheunlabeledobservations in theprimary sample. Second, thegainsare largewhen thereare

more unlabeled observation in the primary sample, because more information can be extracted

from the primary sample when it contains more observations. Finally, the gains are large when

the signal-to-noise ratio is low, because linear regression estimates converge more slowly to the

true parameter when the error term has a larger variance. This slower convergence increases the

marginal return of additional data, which the GMM provides. If none of these conditions obtain,

the researcher sacrifices little by using the labeled-only estimator. However, in these simulations,

in which the exclusion restriction is satisfied, the proposed GMM estimator always does at least as

well as the labeled-only estimator, and sometimes does substantially better.

A final point we consider is the payoff to increasing the number of labeled observations.

Increasing the size of the labeled sample is a surefire way to decrease the variance and RMSE

of the GMM estimator, but collecting more labeled data is o�en expensive (e.g., requires hand-

coding), so there is a trade-off between getting a GMM estimator with the best performance and

reducing the coding burden on the researcher. We can offer some guidance on optimizing this

trade-off. The simulations in Online Appendix I vary the size of the labeled sample, and we can

use this to infer the performance of the GMM estimator relative to a hypothetical labeled-only

estimator that has access to more labeled data.11 The simulations reveal a useful heuristic: when

the primary sample is at least ten times the size of the labeled sample, the GMM estimator usually

performs as well as or better than the labeled-only estimator that has access to twice as many

11 For more theoretical insight, the approximate relationship between the size of the labeled sample and the asymptotic
variance of the GMM estimator can be found in Online Appendix A.
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labeled observations (LABx2).12 This appears to hold approximately across simulation settings,

with the GMM performing much better than the LABx2 estimator under best-case accuracy and

a low signal-to-noise ratio (GMMRMSE of 0.26 vs. LABx2 RMSE of 0.50) but only slightly worse than

the LABx2 when the classifier is more realistic and the signal-to-noise ratio is high (GMM RMSE of

0.05 vs LABx2 RMSE of 0.04). These figures assume balanced classes, but the performance of GMM

relative to LABx2 seems to improve somewhat with imbalanced classes.

This heuristic suggests a rough algorithm for determining the approximate amount of labeled

data the analysis requires. Using theoretical knowledge (e.g., a power analysis) and/or parameter

estimates obtained from labeled data that has already been collected, determine how many

labeled samples would be required for estimation using labeled-only OLS. Call this number M.

On average, the analyst will do just as well with the GMM estimator—provided there are at least

ten times asmany primary samples as labeled samples—if they only collect half asmany, orM /2,

labeled samples. If their predictions are particularly accurate or the signal-to-noise ratio is low,

they can get away with even less, perhaps safely collecting as few asM /4 labeled samples.

In Online Appendix K, we provide a semi-synthetic application in whcih we study the relation-

ship between homeownership and voting for Donald Trump in the 2016 American presidential

election. Although we possess a complete data set, in that application, we artificially make the

homeownership covariate missing for 90% of the observations. In that application, we find that

the GMM’s estimate is by far the closest to the oracle estimate, and the GMM yields a far more

precise estimate than the labeled-only estimator. That extra precision allows the analyst to infer

that the coefficient for homeownership is positive, while the labeled-only estimator cannot reject

the null hypothesis that the coefficient is equal to 0.

5 Application: Hostile Political Dialogue

In this section, we offer an example application with actual missing data in which the consistency

and efficiency of the GMM affects the substantive conclusion. This example studies how people

respond to incivility in political discourse. Scholars of political communication have noted the

rise of incivility in American political discourse and have set out to understand its causes, its

consequences, and how it might be prevented (Mutz and Reeves, 2005; Theocharis et al., 2016).

Munger (2017) shows that ordinary people respond to messages telling them that uncivil

discourse is unacceptable by making fewer uncivil statements. Do third parties sanction uncivil

messages in practice? Citizens might enjoy watching heated exchanges between their peers, as

they do between elites (Mutz and Reeves, 2005), or they might be angered by violations of a

norm of interpersonal communication. This question has important policy implications for how

to reduce political incivility, and hence dampen affective polarization and improve political trust.

If third parties rarely punish uncivil behavior, then reducing incivility may require interventions

that incentivize doing so. If third parties frequently punish uncivil behavior and that behavior

nevertheless persists at high levels, then an intervention that provides citizenswithmore effective

messages for combating incivility may bemore appropriate.

Until recently, it was difficult to observe political conversations among ordinary Americans

in a natural setting. Fortunately, researchers can now access and study millions of online con-

versations on social media (Fong et al., 2019). We draw our data from reddit.com, the world’s

largest online news aggregator, where users post threads and other users can comment on them.

Users can also comment on other users’ comments, and these exchanges sometimes turn into

vitriolic debates. Users can upvote or downvote one another’s comments, and each comment has

a publicly visible score equal to one plus the number of upvotesminus the number of downvotes.

12 The simulations fix np = 104 and double the both the equal validation and training sample sizes from 500 to 103.
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Ouranalysis investigateswhetheruncivil replies to commentsonReddit receivehigher scores than

civil replies.

Our data set consists of the 1,210,166 comments on the politics subreddit that are replies to

other comments in 2014. Although Reddit’s API provides both the text of the comments and their

associated scores, we must ourselves determine whether each comment is uncivil. We classify a

comment as uncivil if it insults another user (“Well hello, Captain Pedantic.”), addresses another

user in a condescending or insolent manner (“Do you understand that? I can’t dumb it down any

further.”), accuses another user of being ignorant or ill-informed (“What part about simple math

eludes you?”), or flatly and tersely contradicts another user (“lol wow you’re delusional”). This

criterion is similar to the “personal attack or harassment” criterion adopted by Munger (2017). We

hand-labeled 3,026 randomly selected observations according to these criteria. To deal with the

long tails of the score distribution, we impose a floor of −10 and ceiling of 10 on the scores.

Dividing the Data
Our hand-labeling yields 3,026 observations where the true incivility labels are known and

1,207,140 observations where the true incivility labels are unknown. We divide the labeled

observations into n t = 2,413 training observations to train the classifier and nv = 613 validation

observations to estimate Γ . Given the difficulty of predicting the label (it occurs in less than a

quarter of all observations), we allocate the majority of the labeled observations to training the

classifier.

Predicting the Labels
We use the training sample to train a support vector machine as implemented in the e1071 R

package (Dimitriadou et al., 2009). The features for this SVMare binary indicators forwhether each

word that appears in at least 5 training documents appear in the document. Because the uncivil

label appears in only 21.0% of training observations, we weight each uncivil observation by 1
0.210

and each civil observation by 1
0.790

during training. This SVM achieves a precision for the incivility

label of 0.36, a recall of 0.53, and an overall accuracy of 0.75. We use this fitted SVM to predict

whether each document in the validation and primary samples is uncivil.

This example highlights the importance of keeping the data used to training the ML classifier

(the training sample) separate from thedataused to estimate the linear projectionof the true label

on the classifier outputs (the validation sample). In the validation sample, the estimated linear

projection of incivility on the intercept and the SVM’s prediction is Γ̂ val,2 = (0.113,0.242).13 In the

training sample, the estimated linear projection is Γ̂ train,2 = (0.108,0.382), deceptively suggesting

a much stronger relationship between the SVM’s prediction and incivility than will actually exist

in the unlabeled sample. Even though the SVM is somewhat overfit (and classifiers are generally

guilty of at least some overfitting), using a separate validation sample for the first-stage of the

two-stage least squares ensures we accurately estimate the relationship between incivility and

the SVM’s prediction in the unlabeled primary sample.

The example also highlights the stringency of the assumptions required to support the naive

estimator and the utility of our test for the exclusion restriction proposed in Section 3. Applying

our test for theexclusion restriction yields ap-valueof 0.302, sowe fail to reject thenull-hypothesis

that the exclusion restriction holds. The exclusion restriction is at least plausible in this case,

but because the null hypothesis is that the exclusion restriction is satisfied, failing to reject that

null hypothesis is not the same as evidence that it is true. The naive estimator also requires

Assumptions 2 and 3, which we can also test in the validation sample. Assumption 2 is satisfied

in this case if the prediction error, zu −xu , is mean zero. Using the validation sample, We estimate

13 Γ̂ 1 = (1,0), because it is the intercept.
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ameanof−0.09with standarderror0.02,which indicates thatAssumption2 is violated.Regressing

the prediction error, zu −xu , on the predictions, zu , in the validation sample to test Assumption 3,

we estimate a coefficient of −0.65 with a standard error of 0.05. The violation of Assumption 3 is

severe: the estimated correlation between the error zu − xu and zu is −0.67. We therefore expect

the naive estimator to be biased and inconsistent.

The features of this application are similar to those in the simulations where GMM’s perfor-

mance gains relative to the naive and labeled-only estimators were largest: the classifier is not

especially accurate, the number of unlabeled observations dwarfs the number of labeled observa-

tions, and the signal-to-noise ratio is low (aswewill see, the estimated effects are roughly between

−0.6 and −1.5, and the standard deviation of the outcome is 4.02). Simulations at the parameters

from this Reddit data, detailed in Online Appendix L, confirm that the GMM outperforms the naive

and labeled-only estimators in simulations at these parameter values.

Obtaining Estimates
We use the implementation of the GMM estimator in our R package. Even though this data set has

over a million observations, the estimation conveniently runs in less than a minute using a single

core on a personal computer. Our method and so�ware should be accessible to researchers who

can only dedicate a modest amount of computing resources to their regression estimates.

Comparison to Alternative Estimators
The substantive question is whether third parties punish uncivil posts. Targets of the uncivil

behavior themselves may downvote the uncivil post. If so, then even in the absence of third-

party punishment, the estimate of the coefficient for incivility on score could be as low as −1

(which would happen if the target of the incivility downvoted and everybody else was indifferent

to the incivility). However, if the effect is below−1, then theremust be third-party punishment on

balance. Thus, to be certain we are finding third-party punishment, the null hypothesis must be

that thecoefficient is greater thanorequal to−1. Thecoefficienton incivilitymerelybeingnegative

is not sufficient to conclude there is third-party punishment.

Figure 2 compares the results of theGMMestimator in this application to the other feasible esti-

mators fromSection 4. The naive estimator (using the predictions, zu , for incivility, xu ) estimates a

negative effect of incivility on post score, but the entire 95%confidence interval is greater than−1,

−1.8

−1.5

−1.2

−0.9

−0.6

Naive Labeled−Only GMM

E
s
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m

a
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Figure 2. The effect of incivility on post score.
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which does not allow us to reject the null hypothesis of no third-party punishment. But we have

good reason to doubt the naive estimator, because we have shown that Assumptions 2 and 3 are

both violated. The labeled-only estimator (ordinary least squares on the labeled data) produces a

confidence interval which is consistent with the null hypothesis of a that incivility is onlymet with

a downvote from the target themselves, but not any third parties.14 In other words, the labeled-

only estimate cannot reject the null hypothesis, although it is not a precise null either. Uniquely,

the GMM’s confidence interval is entirely below −1, rejecting the null hypothesis and finding clear

evidence of third-party punishment.15

6 Conclusion

While using the outputs of ML algorithms as regression covariates offers a promising way of

analyzing new data sources at a large scale, we show that researchers must account for error in

the predicted covariates, unless they are willing to commit to demanding assumptions. We find

that the bias and inconsistency posed by misclassification error can be large enough to alter the

substantive conclusion of the analysis. Moreover, the solutions that many researchers employ to

correct for misclassfication error do not actually address the problem. But we go further than

identifying the problem and characterizing its severity; we also offer two solutions.

The simplest solution is to avoid ML by performing the analysis entirely in the subset of the

data that has been labeled. This approach is best when the gains from using the GMM are small,

such as if the classifier is inaccurate, the signal-to-noise ratio is high, or there are plenty of

labeled observations. It is also attractive if the exclusion restriction is likely violated. Alternatively,

the proposed GMM estimator offers greater efficiency if the exclusion restriction is satisfied. It

performswell in simulations even under harsh conditions that are likely to arise in social scientific

analysis: if classifier is inaccurate, the effect size is small relative to the variation in the outcome,

or the ratio of unlabeled to labeled observations is large.

Wehave largely adopted theML vocabulary common in text, image, and video applications, but

thismethodcanmake it cheaper to collect datamoregenerally. Surveys, voter files, administrative

records, and other data sources are o�en missing important covariates, perhaps because the

questions change from iteration to iteration of the same data set or because particular covariates

are too expensive and time-consuming to measure. Our method offers a more efficient, reliable

way of merging or completing data sets than obtaining the true values of all covariates for the full

sample or restricting analysis to a complete subset of the data.

In the case of multiple surveys, if each survey is a simple random sample from the same

population, researchers can use a ML algorithm to predict the missing covariates in the other

surveys. Future work could extend the estimator to cases that are particularly likely to arise in

these settings—for example,merging several surveyswith partially overlapping covariates orwith

different but known sampling schema. These future extensions raise the exciting possibility of

cheaply conducting statistical analyses with many observations andmany covariates.

Our exposition focused on a missing binary covariate, but both our analysis and our so�ware

accommodates cases with multiple missing covariates and nonbinary covariates. Additionally,

it can be extended to cases where the missing covariate is a function of variables that must be

hand-coded. For example, Anastasopoulos et al. (2016) regress the percentage of a legislator’s

consistency that is blackon thepercentageof constituents in the legislator’s photoswhoareblack.

The percentage of constituents in a given legislator’s photos who are black can only be observed

14 The 95% confidence interval for a multiple imputation estimator drawn from Amelia with 20 imputed data sets is (−3.77,
1.83). This is unaccountably wider than the labeled-only estimator, undermining the motivation to use unlabeled data in
the first place.

15 The robustness of this finding to controlling for the visibility of the comment is assessed inOnlineAppendixM,which shows
that this score-incivility pattern persists across a variety of subsamples that restrict the data to posts that are more or less
likely to be seen (and hence voted upon) by others.

Christian Fong and Matthew Tyler ` Political Analysis 481

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2020.38


by coding each of the legislator’s photos by hand, so it is helpful to useML to reduce the number of

photos that must be hand-coded. Online Appendix E shows how this paper’s GMM can be applied

to these settings, subject to careful planning as to which photos are hand-coded.

If one of the labels is much rarer than the others, researchers may want to reduce the cost

of training their classifier by using active learning or oversampling observations that are more

likely to have the rare label. We caution against these popular practices for two reasons. First,

by collecting a non-representative labeled sample, the researcher deprives themselves of the

opportunity to use the labeled-only estimator, whichwe argue is the best estimator if the classifier

is inaccurate, the signal-to-noise ratio is high, or the exclusion restriction is suspect. Second,

training the classifier on a non-representative sample raises the possibility that prediction error

will be systematically related to the characteristics on which the researcher oversampled. If those

characteristics are correlated with the outcome, this induces a violation of the exclusion restric-

tion. We explore these issues in greater detail in Online Appendix F, and describe a modification

for the GMM to allow researchers to use oversampling or active learning in cases where they are

confident it does not induce a violation of the exclusion restriction.

In many applications, ML is instead used to predict a missing outcome instead of a missing

covariate. Applied researchersmust resist the temptation todismiss this predictionerror asmerely

increasing the variance of the residuals. If the prediction error for the missing outcome is corre-

lated with the covariates of the model, then the analogous naive estimator will be inconsistent,

just like the missing covariate case discussed in this paper. Unfortunately, our preliminary efforts

to solve this problem (not reported in detail here) indicate that the GMM framework developed

in this paper is not as powerful in the missing outcome setting as it is in the missing covariate

setting, since there is no natural analog of the exclusion restriction to exploit. Future research will

need to bemore creative in finding ways to extract information fromML predictions as regression

outcomes.

Throughout, we have supposed all measurement error arises from the classifier’s predictions.

In practice, the human-coders themselvesmay be fallible. If there is only one human coder and no

way to audit their decisions formistakes, the GMM can be seen as amethod for analyzing the data

set as if the fallible human coder had coded every observation. Alternatively, if there are multiple

human coders, the researcher can treat all of the coders agreeing that the label is 1, all coders

agreeing the label is 0, andcoderdisagreement as threedifferent values for the label. The classifier

can thenbe trained topredictwhether the coderswouldagreeand, if so,what their decisionwould

be. Since the GMM accomodates nonbinary covariates and multiple missing covariates, the GMM

could then be applied to regress the outcome on the three-valued label. This would allow the

observations that generate coder disagreement to have different coefficients, and thismay be the

most desirable strategy if we think there is unavoidable ambiguity in the correct label for some

observations.

Alternatively, thegoal is toestimatea regressionas if all observationshadbeencodedaccording

to some gold standard that is in practice observed for only a subset of the observations. An exam-

ple gold standard would be having all of the coders discuss the case and arrive at a consensus.

To use our proposed GMMmethod for this purpose, the analyst would simply substitute the gold

standard observations for the labeled observations in our setup, and the error-prone labels for

the classifier’s predictions. Future research could extend our framework to settings where there

are some observations coded by the gold standard, some observations coded by fallible human

coders, and some observations that have only a classifier-generated prediction. This extension

would be especially valuable in cases where it is difficult but not impossible for humans to label

the missing covariates, such as, arguably, our Reddit application.

Finally, our analysis also suggests a new desideratum for ML algorithms. Our simulations

show that the returns from incorporating ML predictions is increasing in the accuracy of those
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predictions, but satisfying the exclusion restriction required by our GMM is vital. If the goal of a

classifier is to incorporate its outputs into a regression as a covariate, the classifier should seek to

maximize its accuracy subject to the constraint that its predictions satisfy the exclusion restriction.

Modifying existing classifiers to generate predictions that satisfy the exclusion restriction by

construction, rather than focusing exclusively on accuracy, would be a valuable avenue for future

methodological development.
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